4.6 Article

Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach

期刊

SOLAR ENERGY
卷 182, 期 -, 页码 237-244

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2019.02.041

关键词

Perovskite solar cells; Hole transport material (HTM); SCAPS

资金

  1. Alfaisal University [IRG18418]

向作者/读者索取更多资源

We reported numerical simulations of device performances made of methylammonium germanium halide (CH3NH3GeI3)-based perovskite solar cells. The main goal here is to seek for an efficient method to improve the device efficiency of alternative lead-free perovskite based on germanium solar cells by using various organic and inorganic hole transport materials. For that aspiration, the effect of several parameters on the solar cell performance were investigated such as thicknesses of perovskite, HTM, defect density, hole mobility, and metal electrode work function on the charge collection. The device simulation revealed that the optimum thickness of CH3NH3GeI3 absorber is found around 600 Tim. Furthermore, Ge-based perovskite solar cells with Cu2O and D-PBTTT-14 as HTM exhibited a remarkable overall power conversion efficiency reaching 21%. The defect density reduction is a critical factor to improve the solar cell performance and should be controlled under the order of similar to 10(15) cm(3). Further simulations were performed to study the effect of operating temperature on the performance. Our simulation results advocate for a viable route to design hole-transporting materials for highly efficient and stable perovskite solar cells with low cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据