4.6 Article

Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery

期刊

SENSORS
卷 19, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/s19102391

关键词

fluid-solid coupling; air-coupled ultrasonic testing; numerical simulation; lithium-ion battery

资金

  1. Fund of Equipment Pre-research Project during the 13th Five-year plan period [41421070102]

向作者/读者索取更多资源

Aiming at the characteristics of the periodic stacking structure of a lithium-ion battery core and the corresponding relationship between the air-coupled ultrasonic transmission initial wave and the wave propagation mode in each layer medium of a lithium-ion battery, the homogenized finite element model of a lithium-ion battery was developed based on the theory of pressure acoustics and solid mechanics. This model provided a reliable method and basis for solving the visualization of ultrasonic propagation in a lithium-ion battery and the analysis of ultrasonic time-frequency domain characteristics. The finite element simulation analysis and experimental verification of a lithium-ion battery with a near-surface stomata defect, near-bottom stomata defect and middle-layer stomata defect were performed. The results showed that the air-coupled ultrasonic transmission signal can effectively characterize the stomata defect inside a lithium-ion battery. The energy of an air-coupled ultrasonic transmission signal is concentrated between 350-450 kHz, and the acoustic diffraction effect has an important influence on the effect of the ultrasonic and stomata defect. Based on the amplitude response characteristics of the air-coupled ultrasonic transmission wave in the stomata defect area, a C-scan of the lithium-ion battery was performed. The C-scan result verified that air-coupled ultrasonic testing technology can accurately and effectively detect the pre-embedded stomata defect and natural stomata defect in a lithium-ion battery, which is able to promote and expand the application of the technology in the field of electric energy security.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据