4.6 Article

A Sensitivity-enhanced Fiber Grating Current Sensor Based on Giant Magnetostrictive Material for Large-Current Measurement

期刊

SENSORS
卷 19, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/s19081755

关键词

current sensor; fiber grating; finite element analysis; pressurization characteristics

资金

  1. National Natural Science Foundation of China [U1766217]

向作者/读者索取更多资源

Currently, in the modern power industry, it is still a great challenge to achieve high sensitivity and uninterrupted-online measurement of large current on the high voltage gridlines. At present, the fiber grating current sensors based on giant magnetostrictive material used in the modern power industry to achieve uninterrupted-online measurement of large currents on high voltage grid lines is a better method, but the sensitivity of this current sensor is relatively low, therefore, it is key to improve the sensitivity of this current sensor. Here we show a sensitivity-enhanced fiber grating current sensor based on giant magnetostrictive material (in the following, simply referred to as the sensitivity-enhanced fiber grating current sensor) that is able to achieve high sensitivity and uninterrupted-online measurement of large currents by means of pressurizing the giant magnetostrictive material. Sampling the power frequency sinusoidal alternating current signals with the amplitudes of 107, 157 and 262 A respectively, based on realistic factors, for the sensitivity-enhanced current sensor, the sensitivities, compared with that of the traditional fiber grating current sensor based on giant magnetostrictive material (in the following, simply referred to as the traditional fiber grating current sensor), were respectively enhanced by 268.96%, 135.72% and 71.57%. Thus the sensitivity-enhanced fiber grating current sensor allows us to solve the issue of high sensitivity and uninterrupted-online measurement of large currents that have been plaguing the power industry in a very simple and low-cost way.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据