4.8 Article

Targeted antibody and cytokine cancer immunotherapies through collagen affinity

期刊

SCIENCE TRANSLATIONAL MEDICINE
卷 11, 期 487, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scitranslmed.aau3259

关键词

-

资金

  1. European Research Commission grant Cytrix
  2. National Cancer Institute [R01 CA199663]
  3. National Institute of Biomedical Imaging and Bioengineering [K99 EB022636]
  4. JSPS [JP17J05032]
  5. Advanced Graduate Course on Molecular Systems for Devices (Kyushu University)
  6. Fonds Pierre-Francois Vittone

向作者/读者索取更多资源

Cancer immunotherapy with immune checkpoint inhibitors (CPIs) and interleukin-2 (IL-2) has demonstrated clinical efficacy but is frequently accompanied with severe adverse events caused by excessive and systemic immune system activation. Here, we addressed this need by targeting both the CPI antibodies anti-cytotoxic T lymphocyte antigen 4 antibody (alpha CTLA4) + anti-programmed death ligand 1 antibody (alpha PD-L1) and the cytokine IL-2 to tumors via conjugation (for the antibodies) or recombinant fusion (for the cytokine) to a collagen-binding domain (CBD) derived from the blood protein von Willebrand factor (VWF) A3 domain, harnessing the exposure of tumor stroma collagen to blood components due to the leakiness of the tumor vasculature. We show that intravenously administered CBD protein accumulated mainly in tumors. CBD conjugation or fusion decreases the systemic toxicity of both alpha CTLA4+alpha PD-L1 combination therapy and IL-2, for example, eliminating hepatotoxicity with the CPI molecules and ameliorating pulmonary edema with IL-2. Both CBD-CPI and CBD-IL-2 suppressed tumor growth compared to their unmodified forms in multiple murine cancer models, and both CBD-CPI and CBD-IL-2 increased tumor-infiltrating CD8(+) T cells. In an orthotopic breast cancer model, combination treatment with CPI and IL-2 eradicated tumors in 9 of 13 animals with the CBD-modified drugs, whereas it did so in only 1 of 13 animals with the unmodified drugs. Thus, the A3 domain of VWF can be used to improve safety and efficacy of systemically administered tumor drugs with high translational promise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据