4.8 Article

Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects

期刊

SCIENCE TRANSLATIONAL MEDICINE
卷 11, 期 490, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scitranslmed.aao5563

关键词

-

资金

  1. Interdisziplinares Zentrum fur Klinische Forschung (IZKF), Munster [LK2/015/14]
  2. Deutsche Forschungsgemeinschaft (DFG) [SFB TR128, SFB 1009, WI 1722/12-1]
  3. Sanofi Genzyme

向作者/读者索取更多资源

Interference with immune cell proliferation represents a successful treatment strategy in T cell-mediated autoimmune diseases such as rheumatoid arthritis and multiple sclerosis (MS). One prominent example is pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), which mediates de novo pyrimidine synthesis in actively proliferating T and B lymphocytes. Within the TERIDYNAMIC clinical study, we observed that the DHODH inhibitor teriflunomide caused selective changes in T cell subset composition and T cell receptor repertoire diversity in patients with relapsing-remitting MS (RRMS). In a preclinical antigen-specific setup, DHODH inhibition preferentially suppressed the proliferation of high-affinity T cells. Mechanistically, DHODH inhibition interferes with oxidative phosphorylation (OXPHOS) and aerobic glycolysis in activated T cells via functional inhibition of complex III of the respiratory chain. The affinity-dependent effects of DHODH inhibition were closely linked to differences in T cell metabolism. High-affinity T cells preferentially use OXPHOS during early activation, which explains their increased susceptibility toward DHODH inhibition. In a mouse model of MS, DHODH inhibitory treatment resulted in preferential inhibition of high-affinity autoreactive T cell clones. Compared to T cells from healthy controls, T cells from patients with RRMS exhibited increased OXPHOS and glycolysis, which were reduced with teriflunomide treatment. Together, these data point to a mechanism of action where DHODH inhibition corrects metabolic disturbances in T cells, which primarily affects profoundly metabolically active high-affinity T cell clones. Hence, DHODH inhibition may promote recovery of an altered T cell receptor repertoire in autoimmunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据