4.7 Article

Redox properties of compost-derived organic matter and their association with polarity and molecular weight

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 665, 期 -, 页码 920-928

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.02.164

关键词

Composting; Dissolved organic matter (DOM); Electron transfer capacities (ETC); Polar properties; Molecular weight (MW)

资金

  1. Beijing Natural Science Foundation [8182057]
  2. Guangxi Science and Technology Planning Project [GuiKe-AD18126018]

向作者/读者索取更多资源

Compost-derived dissolved organic matter (DOM), which has a wide distribution of molecular weight (MW) and polarity, has a potential application in the remediation of the contaminated soil due to its redox-active functional groups. Composting treatment can change the MW and polarity of the DOM through microbial transformation and degradation. However, the relationship between the redox properties of compost-derived DOM and its MW and polarity is still unclear. DOM was extracted from municipal solid wastes with different composting times in this study, and it was further fractionated into humic acids (HA), fulvic acids (FA) and hydrophilic (HyI) fractions based on its hydrophobicity and XAD-8 resin. Electron transfer capacities [including electron accepting capacities (EAC) and electron donating capacities (EDC)] of the HA, FA and HyI fractions and their associations with polarity and MW were studied. The results showed that the EAC of the HA, FA and HyI all increased after composting. The EDC of the HA and HyI exhibited an increasing trend as well, though that of the FA decreased remarkably after composting. The MW, polarity and redox-active functional groups of the HA, FA and HyI fractions were determined using high performance liquid chromatography and excitation-emission matrix fluorescence spectra coupled with parallel factor analysis. The result showed that the quinone-like groups were mainly detected in the medium MW and transphilic sub-fractions of the HA, FA and HyI, and were the main functional groups responsible for the EAC. The low MW sub-fractions, which consisted mainly of tyrosine-like matter, were the main functional components accounted for the EDC. The results advance our understanding of the influence of MW and polarity on the redox properties of organic substances, and facilitate to reveal the important redox-active functional groups when compost is utilized to remediate the contaminated soil. (c) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据