4.8 Article

INDUCED SEISMICITY Fluid-induced aseismic fault slip outpaces pore-fluid migration

期刊

SCIENCE
卷 364, 期 6439, 页码 464-+

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aaw7354

关键词

-

资金

  1. U.S. Geological Survey (USGS) grant [G17AP00016]
  2. National Science Foundation (NSF) [EAR-1653382]
  3. Southern California Earthquake Center (SCEC)
  4. USGS [G12AC20038]
  5. Agence Nationale de la Recherche (ANR) through the HPPP-CO2 project [ANR-07-PCO2-0001]
  6. NSF [EAR-1033462]
  7. Agence Nationale de la Recherche (ANR) through the HYDROSEIS project [ANR-13-JS-06-0004-01]

向作者/读者索取更多资源

Earthquake swarms attributed to subsurface fluid injection are usually assumed to occur on faults destabilized by increased pore-fluid pressures. However, fluid injection could also activate aseismic slip, which might outpace pore-fluid migration and transmit earthquake-triggering stress changes beyond the fluid-pressurized region. We tested this theoretical prediction against data derived from fluid-injection experiments that activated and measured slow, aseismic slip on preexisting, shallow faults. We found that the pore pressure and slip history imply a fault whose strength is the product of a slip-weakening friction coefficient and the local effective normal stress. Using a coupled shear-rupture model, we derived constraints on the hydromechanical parameters of the actively deforming fault. The inferred aseismic rupture front propagates faster and to larger distances than the diffusion of pressurized pore fluid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据