4.7 Article

Smart tool path generation for 5-axis ball-end milling of sculptured surfaces using process models

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rcim.2018.10.002

关键词

Simulation; Tool path; 5-axis milling

资金

  1. TUBITAK [217M078]
  2. Manufacturing Research Laboratory (MRL)

向作者/读者索取更多资源

Efficient 5-axis milling of free form surfaces required smart parameter selection and tool path generation approaches. Current computer-aided manufacturing (CAM) technology offers limited flexibility and assistance for such purposes, where purely geometrical issues are considered. Consequently, the generated tool path may be off the high-performance milling parameters. In 5-axis milling, the efficient process parameter set usually vary along the tool path due to varying engagement conditions because of inherent reasons. In this paper, a novel approach is proposed for identification of efficient surface milling parameters according to the variation of cutting forces and stability along the tool path, and then continuously implementation of these parameters for smart tool path generation, obeying the geometrical requirements. The proposed approach is applied on representative cases relevant to industrial applications to demonstrate the benefits. It is shown that, use of process simulations in tool path planning and generation offers significant benefits in decreasing the total cycle time in 5-axis milling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据