4.7 Article

Remarkably enhanced polarisability and breakdown strength in PVDF-based interactive polymer blends for advanced energy storage applications

期刊

POLYMER
卷 168, 期 -, 页码 246-254

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2019.02.054

关键词

PVDF; P(VDF-TrFE-CTFE); P(VDF-HFP); Polymer blends; Energy storage; Polar nanostructure

资金

  1. Engineering and Physical Sciences Research Council [EP/L017695/1]
  2. China Scholarship Council (CSC) [201606280030]
  3. EPSRC [EP/L017695/1] Funding Source: UKRI

向作者/读者索取更多资源

Flexible polymer-based dielectric capacitors with superior power density and stability are irreplaceable components in modern electrical devices. Among all dielectrics, ferroelectric relaxor materials are the most competitive candidates due to their high discharged energy density U(e )and efficiency arising from their reversible polar nanodomains at high electric field. Poly(vinylidenedifluoride - trifluoroethylene - chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)), one of the most well-known ferroelectric relaxor polymers, suffers from some limitations, including, poor processability, relatively low breakdown strength and high cost, which inhibit its potential commercial use. In this work, these restrictions have been effectively addressed via a low-cost binary polymer blending route. Owing to the high compatibility and strong interactions between P(VDF-TrFE-CTFE) and Poly (vinylidene difluoride-hexafluoropropylene) (P(VDF-HFP)), the nanostructure of blends can be modulated, which significantly enhanced the reversible polarization Pin-max to 0.132 C/m(2) at the breakdown strength Eb of 600 kV/mm, leading to a high energy density of 21.9 J/cm(3 )in oriented P(VDF-TrFE-CTFE)/P(VDF-HFP) (50/ 50 wt %) blended films. The simplicity of the blending approach and the industrial viability of the processing technique, melt-extrusion, combined with high discharged energy density make oriented P(VDF-TrFE-CTFE)/P (VDF-HFP) (50/50 wt %) blended films a potential candidate for advanced energy storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据