4.8 Article

Bioimaging of multiple elements by high-resolution LA-ICP-MS reveals altered distribution of mineral elements in the nodes of rice mutants

期刊

PLANT JOURNAL
卷 99, 期 6, 页码 1254-1263

出版社

WILEY
DOI: 10.1111/tpj.14410

关键词

laser ablation-inductively coupled plasma-mass spectrometry; bioimaging; mineral element; distribution; transporter; rice; Oryza sativa; node; technical advance

向作者/读者索取更多资源

Inter-vascular transfer in rice (Oryza sativa) nodes is required for delivering mineral elements to developing tissues, which is mediated by various transporters in the nodes. However, the effect of these transporters on distribution of mineral elements in the nodes at a cellular level is still unknown. Here, we established a protocol for bioimaging of multiple elements at a cellular level in rice node by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and compared the mineral distribution profile between wild-type (WT) rice and mutants. Both relative comparison of mineral distribution normalized by endogenous C-13 and quantitative analysis using spiked standards combined with soft ablation gave valid results. Overall, macro-nutrients such as K and Mg were accumulated more in the phloem region, while micro-nutrients such as Fe and Zn were highly accumulated at the inter-vascular tissues of the node. In mutants of nodal Zn transporter OsHMA2, Zn localization pattern in the node tissues did not differ from that of WT; however, Zn accumulation in the inter-vascular tissues was lower in uppermost node I but higher in the third upper node III compared with the WT. In contrast, Si deposition in the mutants of three nodal Si transporters Lsi2, Lsi3 and Lsi6 showed different patterns, which are consistent with the localization of these transporters. This improved LA-ICP-MS analysis combined with functional characterization of transporters will provide further insight into mineral element distribution mechanisms in rice and other plant species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据