4.7 Article

Fast flow field prediction over airfoils using deep learning approach

期刊

PHYSICS OF FLUIDS
卷 31, 期 5, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5094943

关键词

-

资金

  1. National University of Singapore (NUS)
  2. Ministry of Education (MOE), Singapore

向作者/读者索取更多资源

In this paper, a data driven approach is presented for the prediction of incompressible laminar steady flow field over airfoils based on the combination of deep Convolutional Neural Network (CNN) and deep Multilayer Perceptron (MLP). The flow field over an airfoil depends on the airfoil geometry, Reynolds number, and angle of attack. In conventional approaches, Navier-Stokes (NS) equations are solved on a computational mesh with corresponding boundary conditions to obtain the flow solutions, which is a time consuming task. In the present approach, the flow field over an airfoil is approximated as a function of airfoil geometry, Reynolds number, and angle of attack using deep neural networks without solving the NS equations. The present approach consists of two steps. First, CNN is employed to extract the geometrical parameters from airfoil shapes. Then, the extracted geometrical parameters along with Reynolds number and angle of attack are fed as input to the MLP network to obtain an approximate model to predict the flow field. The required database for the network training is generated using the OpenFOAM solver by solving NS equations. Once the training is done, the flow field around an airfoil can be obtained in seconds. From the prediction results, it is evident that the approach is efficient and accurate. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据