4.7 Article

Dynamic mode decomposition for the inspection of three-regime separated transitional boundary layers using a least squares method

期刊

PHYSICS OF FLUIDS
卷 31, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5086225

关键词

-

向作者/读者索取更多资源

Transitional boundary layers undergoing separated flow transition for different free stream turbulence intensity levels and Reynolds numbers have been inspected by applying dynamic mode decomposition (DMD) to time-resolved particle image velocimetry data. The identification of the unstable modes responsible for transition suffers from nonlinear effects if the whole dataset is considered for the construction of the snapshot matrix underlying the flow evolution. To overcome this limit, piecewise linear models aimed at the identification of the different regimes in the entire transition process are proposed. In particular, the flow is initially laminar (i.e., stable), it becomes unstable due to transition, and once transition is completed, the fully turbulent condition leads the boundary layer to a stable regime. The norm of the residuals resulting from the application of DMD on a variable streamwise extension of the dataset shows a trend that is associated with the variation of regime. This trend is analyzed by means of the least squares method, which allows identifying the change in the regime with stable, unstable, and turbulent behaviors. The validity of this procedure is proved by comparing it with previously published results. Moreover, since the DMD is applied to limited temporal snapshots, it provides a temporal resolution of growth rate and positions of switch between the boundary layer states. Such information is used to extract from the big dataset under analysis the time sequences characterized by the largest growth rate, hence quickly highlighting the flow physics driving transition. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据