4.8 Article

Low-Scaling Algorithm for Nudged Elastic Band Calculations Using a Surrogate Machine Learning Model

期刊

PHYSICAL REVIEW LETTERS
卷 122, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.122.156001

关键词

-

资金

  1. U.S. Department of Energy, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division of the Office of Basic Energy Sciences [DE-AC02-76SF00515]

向作者/读者索取更多资源

We present the incorporation of a surrogate Gaussian process regression (GPR) atomistic model to greatly accelerate the rate of convergence of classical nudged elastic band (NEB) calculations. In our surrogate model approach, the cost of converging the elastic band no longer scales with the number of moving images on the path. This provides a far more efficient and robust transition state search. In contrast to a conventional NEB calculation, the algorithm presented here eliminates any need for manipulating the number of images to obtain a converged result. This is achieved by inventing a new convergence criteria that exploits the probabilistic nature of the GPR to use uncertainty estimates of all images in combination with the force in the saddle point in the target model potential. Our method is an order of magnitude faster in terms of function evaluations than the conventional NEB method with no accuracy loss for the converged energy barrier values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据