4.6 Article

Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting

期刊

出版社

ELSEVIER
DOI: 10.1016/j.physa.2019.01.051

关键词

ANN; Thermal conductivity enhancement; Nano-antifreeze; SWCNTs; Experimental data; Curve fitting

向作者/读者索取更多资源

The neural network is a technique to reduce cost and time that can be a good alternative to practical testing. This technique, which has become more important with the advancement of computer science, can also be used to predict the properties of nanofluids. To prove this claim, in this research, an optimal artificial neural network (ANN) was designed to evaluation the thermal conductivity enhancement of the SWCNTs/EG-water nanofluid using experimental data. For this goal, reported experimental enhancement for various concentrations and temperatures were employed. 35 measured data obtained from experiments have been applied to utilize ANN modeling. 80% data were chosen for network training and the remaining data were adopted for network testing. Based on the minimum mean square error (MSE), ANN model with two hidden layers and 4 neurons in each layer was selected. In addition, a new correlation was presented for predicting the thermal conductivity enhancement. Comparative results showed ANN model can forecast the thermal conductivity enhancement of nanofluids appropriately. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据