4.7 Article

Evaluation of the Effect of the Structure of Bacterial Cellulose on Full Thickness Skin Wound Repair on a Microfluidic Chip

期刊

BIOMACROMOLECULES
卷 16, 期 3, 页码 780-789

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm501680s

关键词

-

资金

  1. Ministry of Science and Technology of China [2011CB933201, 2012AA022703]
  2. National Natural Science Foundation of China [21074041, 31170905, 81361140345, 51373043]
  3. Chinese Academy of Sciences [XDA09030305]
  4. CAS/SAFEA International Partnership Program for Creative Research Teams

向作者/读者索取更多资源

Bacterial cellulose (BC) is a kind of nanobiomaterial for tissue engineering. How the nanoscale structure of BC affects skin wound repair is unexplored. Here, the hierarchical structure of BC films and their different effects on skin wound healing were studied both in vitro and in vivo. The bottom side of the BC film had a larger pore size, and a looser and rougher structure than that of the top side. By using a microfluidics-based in vitro wound healing model, we revealed that the bottom side of the BC film can better promote the migration of cells to facilitate wound healing. Furthermore, the full-thickness skin wounds on Wistar rats demonstrated that, compared with gauze and the top side of the BC film, the wound covered by the bottom side of the BC film showed faster recovery rate and less inflammatory response. The results indicate that the platform based on the microfluidic chip provide a rapid, reliable, and repeatable method for wound dressing screening. As an excellent biomaterial for wound healing, the BC film displays different properties on different sides, which not only provides a method to optimize the biocompatibility of wound dressings but also paves a new way to building heterogeneous BC-based biomaterials for complex tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据