4.6 Article

Reaching supercritical field strengths with intense lasers

期刊

NEW JOURNAL OF PHYSICS
卷 21, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/ab1e0d

关键词

radiation reaction; strong-field quantum electrodynamics (QED); radiative corrections

资金

  1. Knut and Alice Wallenberg Foundation
  2. Swedish Research Council [2013-4248, 2016-03329]
  3. Engineering and Physical Sciences Research Council [EP/M018156/1]
  4. EPSRC [EP/M018156/1] Funding Source: UKRI
  5. Swedish Research Council [2016-03329] Funding Source: Swedish Research Council

向作者/读者索取更多资源

It is conjectured that all perturbative approaches to quantum electrodynamics (QED) break down in the collision of a high-energy electron beam with an intense laser, when the laser fields are boosted to 'supercritical' strengths far greater than the critical field of QED. As field strengths increase toward this regime, cascades of photon emission and electron-positron pair creation are expected, as well as the onset of substantial radiative corrections. Here we identify the important role played by the collision angle in mitigating energy losses to photon emission that would otherwise prevent the electrons reaching the supercritical regime. We show that a collision between an electron beam with energy in the tens of GeV and a laser pulse of intensity 10(24)W cm(-2) at oblique, or even normal, incidence is a viable platform for studying the breakdown of perturbative strong-field QED. Our results have implications for the design of near-term experiments as they predict that certain quantum effects are enhanced at oblique incidence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据