4.4 Article

EEG-based BCI system for decoding finger movements within the same hand

期刊

NEUROSCIENCE LETTERS
卷 698, 期 -, 页码 113-120

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2018.12.045

关键词

Electroencephalography (EEG); Brain computer interfaces (BCIs); Time-frequency distribution; Finger movements; Support vector machines

资金

  1. Scientific Research Support Fund of Jordan [ENG/1/9/2015]

向作者/读者索取更多资源

Decoding the movements of different fingers within the same hand can increase the control's dimensions of the electroencephalography (EEG)-based brain-computer interface (BCI) systems. This in turn enables the subjects who are using assistive devices to better perform various dexterous tasks. However, decoding the movements performed by different fingers within the same hand by analyzing the EEG signals is considered a challenging task. In this paper, we present a new EEG-based BCI system for decoding the movements of each finger within the same hand based on analyzing the EEG signals using a quadratic time-frequency distribution (QTFD), namely the Choi-William distribution (CWD). In particular, the CWD is employed to characterize the time-varying spectral components of the EEG signals and extract features that can capture movement-related information encapsulated within the EEG signals. The extracted CWD-based features are used to build a two-layer classification framework that decodes finger movements within the same hand. The performance of the proposed system is evaluated by recording the EEG signals for eighteen healthy subjects while performing twelve finger movements using their right hands. The results demonstrate the efficacy of the proposed system to decode finger movements within the same hand of each subject.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据