4.5 Article

Transcranial Alternating Current Stimulation Has Frequency-Dependent Effects on Motor Learning in Healthy Humans

期刊

NEUROSCIENCE
卷 411, 期 -, 页码 130-139

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2019.05.041

关键词

tACS; motor learning; motor cortex; beta; gamma; TMS

向作者/读者索取更多资源

It is well established that the primary motor cortex (M1) plays a significant role in motor learning in healthy humans. It is unclear, however, whether mechanisms of motor learning include M1 oscillatory activity. In this study, we aimed to test whether M1 oscillations, entrained by transcranial Alternating Current Stimulation (tACS) at motor resonant frequencies, have any effect on motor acquisition and retention during a rapid learning task, as assessed by kinematic analysis. We also tested whether the stimulation influenced the corticospinal excitability changes after motor learning. Sixteen healthy subjects were enrolled in the study. Participants performed the motor learning task in three experimental conditions: sham-tACS (baseline), (beta-tACS and gamma-tACS. Corticospinal excitability was assessed with single-pulse TMS before the motor learning task and 5, 15, and 30 min thereafter. Motor retention was tested 30 min after the motor learning task. During training, acceleration of the practiced movement improved in the baseline condition and the enhanced performance was retained when tested 30 min later. The beta-tACS delivered during training inhibited the acquisition of the motor learning task. Conversely, the gamma-tACS slightly improved the acceleration of the practiced movement during training but it reduced motor retention. At the end of training, corticospinal excitability had similarly increased in the three sessions. The results are compatible with the hypothesis that entrainment of the two major motor resonant rhythms through tACS over M1 has different effects on motor learning in healthy humans. The effects, however, were unrelated to corticospinal excitability changes. (C) 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据