4.7 Article

Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning

期刊

NEUROLOGY
卷 93, 期 1, 页码 E8-E19

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1212/WNL.0000000000007732

关键词

-

资金

  1. National Key R&D Program of China [2016YFC1301600]
  2. Program for JLU Science and Technology Innovative Research Team [2017TD-12]
  3. EPSRC [EP/G010420/1, EP/K036157/1] Funding Source: UKRI

向作者/读者索取更多资源

Objective To determine the effect of remote ischemic preconditioning (RIPC) on dynamic cerebral autoregulation (dCA) and various blood biomarkers in healthy adults. Methods A self-controlled interventional study was conducted. Serial measurements of dCA were performed at 7 time points (7, 9, and 11 AM; 2, 5, and 8 PM, and 8 AM on the next day) without or with RIPC, carried out at 7: 20 to 8 AM. Venous blood samples were collected at baseline (7 AM) and 1 hour after RIPC, and blood biomarkers, including 5 neuroprotective factors and 25 inflammation-related biomarkers, were measured with a quantitative protein chip. Results Fifty participants were enrolled (age 34.54 +/- 12.01 years, 22 men). Compared with the results on the day without RIPC, dCA was significantly increased at 6 hours after RIPC, and the increase was sustained for at least 24 hours. After RIPC, 2 neuroprotective factors (glial cell-derived neurotrophic factor and vascular endothelial growth factor-A) and 4 inflammation-related biomarkers (transforming growth factor-beta 1, leukemia inhibitory factor, matrix metallopeptidase-9, and tissue inhibitor of metalloproteinase-1) were significantly elevated compared with their baseline levels. Conversely, monocyte chemoattractant protein-1 was significantly lower compared with its baseline level. Conclusions RIPC induces a sustained increase of dCA from 6 to at least 24 hours after treatment in healthy adults. In addition, several neuroprotective and inflammation-related blood biomarkers were differentially regulated shortly after RIPC. The increased dCA and altered blood biomarkers may collectively contribute to the beneficial effects of RIPC on cerebrovascular function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据