4.8 Article

Orientational and directional locking of colloidal clusters driven across periodic surfaces

期刊

NATURE PHYSICS
卷 15, 期 8, 页码 776-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-019-0515-7

关键词

-

资金

  1. Alexander von Humboldt Foundation
  2. ERC [320796]
  3. European Research Council (ERC) [320796] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

When particles are driven across crystalline surfaces, their trajectories do not necessarily follow the applied force but become locked to the substrate lattice directions. Such directional locking, being relevant for bottom-up nanodevice assembly(1,2) and particle sorting(3-6), has been intensively studied for isolated or single particles(3-11). Here we experimentally study the motion of extended colloidal clusters sliding over a periodically corrugated surface. We observe that both their orientational and centre-of-mass motions become locked into directions not coinciding with the substrate symmetry but determined by the geometrical moire superstructure formed by the cluster and substrate lattices. In general, such moire superstructures are not strictly periodic, which leads to competing locking directions depending on cluster size. Remarkably, we uncover a dependence of directional locking on the higher Fourier components of the surface corrugation profile, which can be tuned on atomic surfaces via the external load(12,13). This allows for an unprecedented control of cluster steering relevant for nanomanipulations on surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据