4.8 Article

Unified theory of thermal transport in crystals and glasses

期刊

NATURE PHYSICS
卷 15, 期 8, 页码 809-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-019-0520-x

关键词

-

资金

  1. NCCR MARVEL - Swiss National Science Foundation

向作者/读者索取更多资源

Crystals and glasses exhibit fundamentally different heat conduction mechanisms: the periodicity of crystals allows for the excitation of propagating vibrational waves that carry heat, as first discussed by Peierls, while in glasses the lack of periodicity breaks Peierls's picture and heat is mainly carried by the coupling of vibrational modes, often described by a harmonic theory introduced by Allen and Feldman. Anharmonicity or disorder are thus the limiting factors for thermal conductivity in crystals or glasses. Hitherto, no transport equation has been able to account for both. Here, we derive such an equation, resulting in a thermal conductivity that reduces to the Peierls and Allen-Feldman limits, respectively, in anharmonic crystals or harmonic glasses, while also covering the intermediate regimes where both effects are relevant. This approach also solves the long-standing problem of accurately predicting the thermal properties of crystals with ultralow or glass-like thermal conductivity, as we show with an application to a thermoelectric material representative of this class.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据