4.8 Article

Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers

期刊

NANO LETTERS
卷 19, 期 5, 页码 3313-3320

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.9b00936

关键词

Perovskite; electron-transport; relative permittivity; recombination; fullerene

资金

  1. National Key Research Program of China [2016YFA0202403]
  2. National Natural Science Foundation of China [61604090]
  3. Air Force Office of Scientific Research [FA9550-18-1-0233, FA9550-17-1-0341]
  4. NSF I/UCRC: Center for Energy Harvesting Materials and Systems (CEHMS)
  5. STTR program (Nanosonic)

向作者/读者索取更多资源

Fullerene derivative, such as [6,6]-phenyl C61 butyric acid methyl ester (PCBM), is widely used as an electron-transport layer (ETL) in inverted perovskite solar cell (PSC). However, its low electron mobility, complexity in achieving quality film formation, and severe nonradiative recombination at perovskite/PCBM interface due to the large electron capture region, lead to lower efficiency for inverted PSCs compared to the normal structures. Herein, we demonstrate an effective and practical strategy to overcome these challenges. Conjugated n-type polymeric materials are mixed together with PCBM to form a homogeneous bulk-mixed (HBM) continuous film with high electron mobility and suitable energy level. HBM film is found to completely cap the perovskite surface to enhance the electron extraction. The critical electron capture radius of the HBM decreases to 12.52 nm from 14.89 nm of PCBM due to the large relative permittivity, resulting in reduced nonradiative recombination at perovskite/HBM interface. The efficiency of inverted PSCs with HBM ETLs exceeds 20.6% with a high fill factor of 0.82. Further, the stability of devices is improved owing to the high hydrophobicity of the HBM ETLs. Under ambient air condition after 45 days, the efficiency of inverted PSCs based on HBM remains 80% of the initial value. This is significantly higher than the control devices which retain only 48% of the initial value under similar aging conditions. We believe these breakthroughs in improving efficiency and stability of inverted PSCs will expedite their transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据