4.7 Article

Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure

期刊

BIOMACROMOLECULES
卷 17, 期 2, 页码 590-600

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.5b01538

关键词

-

资金

  1. KAUST
  2. Portuguese Foundation for Science and Technology [UID/CTM/50025/2013]

向作者/读者索取更多资源

We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (xi), the cross-sectional polymer chain radius (R-c) and the fractal dimension (d(f)) of the gel networks. The fractal dimension d(f) obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据