4.5 Article

Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering

期刊

MICROSCOPY RESEARCH AND TECHNIQUE
卷 82, 期 8, 页码 1316-1325

出版社

WILEY
DOI: 10.1002/jemt.23282

关键词

CNTs; electrospinning; electrospray; polyurethane; cardiac tissue engineering

资金

  1. Tehran University of Medical Sciences [940118127829]

向作者/读者索取更多资源

Conductive nanofibers have been considered as one of the most interesting and promising candidate scaffolds for cardiac patch applications with capability to improve cell-cell communication. Here, we successfully fabricated electroconductive nanofibrous patches by simultaneous electrospray of multiwalled carbon nanotubes (MWCNTs) on polyurethane nanofibers. A series of CNT/PU nanocomposites with different weight ratios (2:10, 3:10, and 6:10wt%) were obtained. Scanning electron microscopy, conductivity analysis, water contact angle measurements, and tensile tests were used to characterize the scaffolds. FESEM showed that CNTs were adhered on PU nanofibers and created an interconnected web-like structures. The SEM images also revealed that the diameters of nanofibers were decreased by increasing CNTs. The electrical conductivity, tensile strength, Young's modulus, and hydrophilicity of CNT/PU nanocomposites also enhanced after adding CNTs. The scaffolds revealed suitable cytocompatibility for H9c2 cells and human umbilical vein endothelial cells (HUVECs). This study indicated that simultaneous electrospinning and electrospray can be used to fabricate conductive CNT/PUnanofibers, resulting in better cytocompatibility and improved interactions between the scaffold and cardiomyoblasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据