4.2 Article

Heterogeneity of ROS levels in antibiotic-exposed mycobacterial subpopulations confers differential susceptibility

期刊

MICROBIOLOGY-SGM
卷 165, 期 6, 页码 668-682

出版社

MICROBIOLOGY SOC
DOI: 10.1099/mic.0.000797

关键词

Mycobacteria; subpopulations; rifampicin; isoniazid; hydroxyl radical; superoxide; antibiotic susceptibility

资金

  1. DBT project [BT-PR23219-MED-29-1184-2017]
  2. DBT-IISc partnership programme
  3. IISc

向作者/读者索取更多资源

Phenotypically heterogeneous but genetically identical mycobacterial subpopulations exist in in vitro cultures, in vitro-infected macrophages, infected animal models and tuberculosis patients. In this regard, we recently reported the presence of two subpopulations of cells, which are phenotypically different in length and buoyant density, in mycobacterial cultures. These are the low-buoyant-density short-sized cells (SCs), which constitute similar to 10-20% of the population, and the high-buoyantdensity normal/long-sized cells (NCs), which form similar to 80-90% of the population. The SCs were found to be significantly more susceptible to rifampicin (RIF), isoniazid (INH), H2O2 and acidified nitrite than the NCs. Here we report that the RIF-/INH-/H2O2 -exposed SCs showed significantly higher levels of oxidative stress and therefore higher susceptibility than the equivalent number of exposed NCs. Significantly higher levels of hydroxyl radical and superoxide were found in the antibiotic-exposed SCs than in the equivalently exposed NCs. Different proportions of the subpopulation of SCs were found to have different levels of reactive oxygen species (ROS). The hydroxyl radical quencher, thiourea, and the superoxide dismutase mimic, TEMPOL, significantly reduced hydroxyl radical and superoxide levels, respectively, in the antibiotic-exposed SCs and NCs and thereby decreased their differential susceptibility to antibiotics. Thus, the present study shows that the heterogeneity of the reactive oxygen species (ROS) levels in these mycobacterial subpopulations confers differential susceptibility to antibiotics. We have discussed the possible mechanisms that can generate differential ROS levels in the antibiotic-exposed SCs and NCs. The present study advances our current understanding of the molecular mechanisms underlying antibiotic tolerance in mycobacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据