4.7 Article

Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2019.03.119

关键词

Surface finishing; Ti alloys; Fatigue life; Additive manufacturing; X-ray diffraction; Electron microscopy

向作者/读者索取更多资源

Finishing methods of additive manufactured metal parts are becoming a key driver of industrial viability, increasingly with additive processes being challenged in demanding end-product applications. The same scenario stresses the requirements as to fatigue life of parts built by Additive Manufacturing (AsM). The paper addresses fatigue life of Ti6Al4V produced by Powder Bed Fusion in four finishing conditions: as built, tool machined, after tumbling and after tumbling and subsequent shot-peening. Failure mechanisms at the micro-scale are observed in order to reinforce the mechanical results by identifying the role of different surface morphologies in crack initiation. X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques and microanalysis (EDX) are used to investigate microstructural modifications generated by the different finishing methods. Results show that tumbling alone does not improve fatigue life against the as built condition, whereas tumbling and subsequent shot peening allow matching the fatigue endurance of tool machined specimens. The shot peening process causes surface amorphization and implantation of the peening media turning into subsurface inclusions. Based on the results, an optimized finishing process can be envisaged, consisting in prolonged tumbling up to the removal of a stock allowance at least equal to the powder size, before shot peening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据