4.3 Article

Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering

出版社

ELSEVIER
DOI: 10.1016/j.msec.2019.109819

关键词

Soft tissue engineering; Biodegradable polyurethanes; Chitosan; Electrospinning; Cell adhesion and proliferation

资金

  1. Fundacao para a Ciencia e a Tecnologia, FCT, Portugal [SFRH/BD/90682/2012]
  2. FEDER through the COMPETE 2020 Programme
  3. FCT - Portuguese Science and Technology Foundation [UID/CTM/50025/2013]
  4. Fundação para a Ciência e a Tecnologia [SFRH/BD/90682/2012] Funding Source: FCT

向作者/读者索取更多资源

The composition and architecture of a scaffold determine its supportive role in tissue regeneration. In this work, we demonstrate the feasibility of obtaining a porous electrospun fibrous structure from biodegradable polyurethanes (Pus) synthesized using polycaprolactone-diol as soft segment and, as chain extenders, chitosan (CS) and/or dimethylol propionic acid. Fourier transform infrared spectroscopy and proton nuclear magnetic resonance confirmed the syntheses. Fibre mats' properties were analysed and compared with those of solvent cast films. Scanning electron microscopy images of the electrospun scaffolds revealed fibres with diameters around 1 pm. From tensile tests, we found that Young's modulus increases with CS content and is higher for films (2.5 MPa to 6.5 MPa) than for the corresponding fibre mats (0.8 MPa to 3.2 MPa). The use of CS as the only chain extender improves recovery ratio and resilience. From X-ray diffraction, a higher crystalline degree was identified in fibre mats than in the corresponding films. Films' wettability was enhanced by the presence of CS as shown by the decrease of water contact angle. X-ray photoelectron spectroscopy revealed that while ester groups are predominant at the films' surface, ester and urethanes are present in similar concentrations at fibres' surface, favouring the interaction with water molecules. Both films and fibres undergo hydrolytic degradation. In vitro evaluation was performed with human dermal fibroblasts. No PU sample revealed cytotoxicity. Cells adhered to fibre mats better than to films and proliferation was observed only for samples of CS-containing PUs. Results suggest that electrospun fibres of CS-based polyurethanes are good candidate scaffolds for soft tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据