4.3 Article

Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples

出版社

ELSEVIER
DOI: 10.1016/j.msec.2019.109825

关键词

Magnetic-MIP; Environmental analysis; Electrochemical sensor; Methyl green dye

资金

  1. National Council for Scientific and Technological Development (CNPq) [306650/2016-9, 465571/2014-0]
  2. FAPESP [2014/50945-4]

向作者/读者索取更多资源

A new biomimetic sensor was prepared on carbon paste with magnetic molecularly imprinted polymer (mag-MIP) for sensitive and selective detection of methyl green dye. The mag-MIP was synthesized using a functional monomer that was selected before by computational simulation. A mag-NIP (magnetic non-imprinted polymer) control material was also prepared for comparative purposes. Modeling adsorption studied revealed that the dye polymer interface followed pseudo-first order kinetics and that maximum adsorption (Q(m)) of the dye on mag-MIP was 3.13 mg g(-1), while the value for mag-NIP was 1.58 mg g(-1). The selective material was used as a sensing spot in fabrication of an electrochemical sensor based on modified carbon paste. For electrochemical analysis, the best achievement of the sensor was acquire by tack together a paste with 6.7% (w/w) of mag-MIP and using square-wave adsorptive anodic stripping voltammetry (SWAdASV) in 0.1 mol L-1 phosphate buffer (pH 7.0), with an applied potential (E-appl) of 0.3 V vs. Ag vertical bar AgClsat during an adsorption time (T-ads) of 120 s. The results were obtained under optimized conditions in which sensor provided a linear concentration range of methyl green from 9.9 x 10(-8) to 1.8 x 10(-6) mol L-1, with a limit of detection (LOD) of 1.0 x 10(-8) mol L-1 and a satisfactory relative standard deviation (RSD) of 4.3% (n = 15). The proposed sensor was applying using two spiked river water samples, obtaining recoveries ranging from 93% to 103%. The proposed method exhibits excellent precision also high reliability and proved to be an alternative method for the quantification of methyl green in real samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据