4.3 Article

An appraisal of the thermal decomposition mechanisms of ILs as potential lubricants

期刊

LUBRICATION SCIENCE
卷 31, 期 6, 页码 229-238

出版社

WILEY
DOI: 10.1002/ls.1457

关键词

anion chain length; anion type; cation chain length; cation type; FTIR; IL lubricants; static thermal decomposition and dynamic thermal decomposition; TGA

向作者/读者索取更多资源

Ionic liquid (IL) lubricants are rapidly seeing increased use as either base lubricants or additives for a wide range of functionalities. This study considers the thermal stability of the ILs with the emphasis being their use as potential lubricants. The effect of IL chemistry, including anion chain length, cation chain length, anion type, and cation type, on their thermal stability is studied. The decomposition mechanism as a function of time and temperature is considered. Five ILs are studied by utilising both thermogravimetric analysis (TGA) for the dynamic thermal decomposition and Fourier transform IR spectroscopy (FTIR) for the static thermal decomposition. For static thermal decomposition, both time and temperature are varied. The results show that the variation of IL chemistry directly influences their thermal stability. The increase of either cation or anion chain length decreases their thermal stability. Both anion and cation type have a significant influence on the thermal stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据