4.6 Article

Investigation of the Hydrophobic Nature of Metal Oxide Surfaces Created by Atomic Layer Deposition

期刊

LANGMUIR
卷 35, 期 17, 页码 5762-5769

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b00577

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DOE DE-FG02-03-ER154757]
  2. Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF ECCS-1542205]
  3. MRSEC program at the Materials Research Center [NSF DMR-1121262]
  4. International Institute for Nanotechnology (IIN)
  5. Keck Foundation
  6. State of Illinois, through the IIN

向作者/读者索取更多资源

Surface hydrophobicity can be exploited in the design of catalyst materials to improve their activity and selectivity. One versatile method for modifying the hydrophobicity of the environment surrounding an active site is atomic layer deposition (ALD). In this work, Al2O3, TiO2, and SiO2 deposited by ALD as well as CeO2 deposited by electron beam evaporation-all on alpha-Al2O3 wafers-are investigated to determine their intrinsic hydrophobicity and any changes upon exposure to the atmosphere. The properties of metal oxide thin films are compared to those of single-crystal alpha-Al2O3, alpha-SiO2, and Y/ZrO2. Contact angle measurements with water combined with X-ray photoelectron spectroscopy studies are applied to determine the hydrophobicity and elemental content of the metal oxides. Both the single-crystal and thin-film metal oxides are found to be intrinsically hydrophilic following a rapid thermal-processing procedure. Upon exposure to air, the investigated metal oxide surfaces become increasingly hydrophobic, correlated to the adsorption of carbonaceous species. Metal oxide thin films deposited by ALD exhibit the same hydrophobicity behavior as their single-crystal equivalents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据