4.0 Article

Active vibration control of a vehicle suspension system having biodynamic driver model with state derivative feedback LQR

出版社

GAZI UNIV, FAC ENGINEERING ARCHITECTURE
DOI: 10.17341/gazimmfd.570732

关键词

State derivative feedback LQR control; active suspension systems; linear matrix inequalities

向作者/读者索取更多资源

In this study, the state-derivative feedback LQR design is proposed for the active vibration control of a vehicle suspension system. In active vibration control problems, state derivative signals which are velocity and acceleration signals are more accurately obtained rather than displacement and velocity signals, since the accelerometers are mostly used. Therefore, state derivative feedback control has been employed instead of state feedback control which is frequently applied in the active suspension literature. Controller design is expressed as a convex optimization problem with linear matrix inequalities. A five-degree-of-freedom model including suspension, seat and driver dynamics is used to examine controller performance in terms of ride comfort, safety and power consumption. Proposed controller and state feedback LQR structure have been examined for different road roughness grades and driving velocities by the use of ISO2631 standard.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据