4.3 Article

Effects of Molecular Structure on the Physical, Chemical, and Electrical Properties of Ester-Based Transformer Insulating Liquids

期刊

出版社

WILEY
DOI: 10.1002/aocs.12212

关键词

Transformers; Insulating liquids; Natural esters; Polyol esters; Molecular structure; Electrical properties; Transesterification

向作者/读者索取更多资源

This article presents the experimental studies carried out on the environmental friendly polyol ester insulating liquids to investigate the effect of molecular structure on the physical, chemical, and electrical properties. Six different polyol esters that can be produced from the transesterification of various methyl esters with neopentylglycol/trimethylolpropane alcohols were synthesized and compared with those of refined, bleached, and deodorized palm oil (RBDPO) and mineral transformer oil. The finding suggests that the physical properties like fire point, pour point, and viscosity are very much affected by the molecular weight and molecular composition of the polyol esters. The electrical properties are also highly influenced by the molecular structure-related characteristics, such as the polarity, dipole polarization, carbon chain length, and degree of branching. The results confirm the findings of previous studies that the polyol esters and RBDPO have more polarity and dipole polarization compared to mineral oil. The experimental evidence showed that the newly synthesized insulating liquids have favorable thermal and electrical properties, thus suggesting that the insulating liquids have the potential to replace conventional insulating liquids to provide a more sustainable power system in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据