4.8 Article

High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 141, 期 17, 页码 6922-6929

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b12982

关键词

-

资金

  1. Marsden Fund
  2. Rutherford Discovery Fellowship
  3. NSFC [21734001, 51761165023]

向作者/读者索取更多资源

Modest exciton diffusion lengths dictate the need for nanostructured bulk heterojunctions in organic photovoltaic (OPV) cells; however, this morphology compromises charge collection. Here, we reveal rapid exciton diffusion in films of a fused-ring electron acceptor that, when blended with a donor, already outperforms fullerene-based OPV cells. Temperature-dependent ultrafast exciton annihilation measurements are used to resolve a quasi-activationless exciton diffusion coefficient of at least 2 X 10(-2)cm(2)/s, substantially exceeding typical organic semiconductors and consistent with the 20-50 nm domain sizes in optimized blends. Enhanced three-dimensional diffusion is shown to arise from molecular and packing factors; the rigid planar molecular structure is associated with low reorganization energy, good transition dipole moment alignment, high chromophore density, and low disorder, all enhancing long-range resonant energy transfer. Relieving exciton diffusion constraints has important implications for OPVs; large, ordered, and pure domains enhance charge separation and transport, and suppress recombination, thereby boosting fill factors. Further enhancements to diffusion lengths may even obviate the need for the bulk heterojunction morphology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据