4.8 Article

Taming Ambident Triazole Anions: Regioselective Ion Pairing Catalyzes Direct N-Alkylation with Atypical Regioselectivity

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 141, 期 17, 页码 7181-7193

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b02786

关键词

-

资金

  1. European Research Council under the European Union [340163]
  2. Syngenta
  3. EPSRC
  4. European Research Council (ERC) [340163] Funding Source: European Research Council (ERC)
  5. EPSRC [1941143] Funding Source: UKRI

向作者/读者索取更多资源

Controlling the regioselectivity of ambident nucleophiles toward alkylating agents is a fundamental problem in heterocyclic chemistry. Unsubstituted triazoles are particularly challenging, often requiring inefficient stepwise protection-deprotection strategies and prefunctionalization protocols. Herein we report on the alkylation of archetypal ambident 1,2,4-triazole, 1,2,3-triazole, and their anions, analyzed by in situ( 1)H/F-19 NMR, kinetic modeling, diffusion-ordered NMR spectroscopy, X-ray crystallography, highly correlated coupled-cluster computations [CCSD(T)-F12, DF-LCCSD(T)-F12, DLPNO-CCSD(T)], and Marcus theory. The resulting mechanistic insights allow design of an organocatalytic methodology for ambident control in the direct N-alkylation of unsubstituted triazole anions. Amidinium and guanidinium receptors are shown to act as strongly coordinating phase-transfer organocatalysts, shuttling triazolate anions into solution. The intimate ion pairs formed in solution retain the reactivity of liberated triazole anions but, by virtue of highly regioselective ion pairing, exhibit alkylation selectivities that are completely inverted (1,2,4-triazole) or substantially enhanced (1,2,3-triazole) compared to the parent anions. The methodology allows direct access to 4-alkyl-1,2,4-triazoles (rr up to 94:6) and 1-alkyl-1,2,3-triazoles (rr up to 99:1) in one step. Regioselective ion pairing acts in effect as a noncovalent in situ protection mechanism, a concept that may have broader application in the control of ambident systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据