4.8 Article

Is the solid electrolyte interphase in lithium-ion batteries really a solid electrolyte? Transport experiments on lithium bis(oxalato)borate-based model interphases

期刊

JOURNAL OF POWER SOURCES
卷 418, 期 -, 页码 138-146

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2019.01.060

关键词

Lithium ion battery; SEI; LiBOB; Transport

向作者/读者索取更多资源

In order to improve the properties of the solid electrolyte interphase (SEI) on the graphite anode in lithium-ion batteries, different electrolyte additives are used, such as lithium bis(oxalate)borate (LiBOB), vinylene carbonate, and fluoroethylene carbonate. It is known that LiBOB increases the SEI resistance, but there is very little fundamental knowledge about the influence of LiBOB on the structure of the SEI as well as on ion and molecule transport mechanisms in the SEI. Here, we study SEIs grown at the interface between a planar glassy carbon electrode and battery electrolytes containing different amounts of LiBOB. The SEIs are characterized by a combination of FIB-SEM, AFM, electrochemical impedance spectroscopy and redox probe experiments. The transport of Li+ ions and of redox molecules becomes slower with increasing LiBOB concentration in the electrolyte, but like observed for a LiBOB-free electrolyte, the effective diffusion coefficients of Li+ ions and ferrocene molecules in the SEIs are virtually identical and show the same temporal evolution after voltammetric SEI formation. This gives strong indication that both Li+ ions and molecules are transported in the liquid electrolyte phase inside the pores of the SEI and thus challenges the common view of a solid-electrolyte-type Li+ transport mechanism in SEIs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据