4.6 Article

In Situ Visualization of Site-Dependent Reaction Kinetics in Shape-Controlled Nanoparticles: Corners vs Edges

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 123, 期 23, 页码 14746-14753

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.9b00464

关键词

-

资金

  1. EPSRC (UK) [EP/J0118058/1]
  2. postdoctoral research assistantship (PDRA)

向作者/读者索取更多资源

Corner and edge sites have long been predicted to play a dominant role in the chemistry of nanomaterials due to their low metal-metal coordination numbers. However, due to the difficulty in directly observing chemical reactions, a detailed understanding of how a material's crystallographic sites and morphology affect those sites' reaction kinetics is limited. Using environmental scanning transmission electron microscopy (ESTEM), we report direct observations under continuous reaction conditions of site-dependent chemical reactivity critical to corrosion and heterogeneous catalysis. A range of fcc nickel nanocrystal morphologies bound by the low index {111} facets (triangular plates, hexagonal plates, and decahedral and icosahedral nanoparticles) were studied during oxidation to visualize in situ changes using atomic number (Z) contrast ESTEM. Oxidation is shown to occur preferentially at the corner sites and then the edges. The enhanced oxidation rate of the corners persists until corrosion has progressed to a depth of similar to 2-4 nm, depending on the nanoparticle geometry. The nanoparticle systems showed that the triangular plates were the most reactive followed by the hexagonal plates, decahedra, and icosahedra. Time-resolved measurements of oxidation rates show a size-dependent induction period for the edges, hypothesized to be due to oxygen diffusion along the surface of the smaller particles to react preferentially at the more reactive corner sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据