4.7 Article

Icariin attenuates neuroinflammation and exerts dopamine neuroprotection via an Nrf2-dependent manner

期刊

JOURNAL OF NEUROINFLAMMATION
卷 16, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12974-019-1472-x

关键词

Parkinson's disease; Neuroinflammation; Nrf2; Icariin; Neuroprotection

资金

  1. National Natural Science Foundation of China [81760658]
  2. foundation for High-level Innovative Talents of Guizhou Province [20164027]
  3. Innovation Research Group project of Education Department of Guizhou Province [2016038]
  4. foundation for Excellent Young Talents of Zunyi Medical University [201603]
  5. Master Start Foundation of Zunyi Medical University [F-898]
  6. Shijingshan's Tutor Studio of Pharmacology [GZS-201607]

向作者/读者索取更多资源

BackgroundOxidative stress and neuroinflammation are considered the major central events in the process of Parkinson's disease (PD). Nrf2 is a key regulator of endogenous defense systems. New finds have contacted activation of Nrf2 signaling with anti-inflammatory activities. Therefore, the outstanding inhibition of neuroinflammation or potent Nrf2 signaling activation holds a promising strategy for PD treatment. Icariin (ICA), a natural compound derived from Herba Epimedii, presents a number of pharmacological properties, including anti-oxidation, anti-aging and anti-inflammatory actions. Recent studies have confirmed ICA exerted neuroprotection against neurodegenerative disorders. However, the underlying mechanisms were not fully elucidated.MethodsIn the present study, mouse nigral stereotaxic injection of 6-hydroxydopamine (6-OHDA)-induced PD model was performed to investigate ICA-conferred dopamine (DA) neuroprotection. In addition, adult Nrf2 knockout mice and primary rat midbrain neuron-glia co-culture was applied to elucidate whether ICA-exerted neuroprotection was through an Nrf2-dependent mechanism.ResultsResults indicated that ICA attenuated 6-OHDA-induced DA neurotoxicity and glial cells-mediated neuroinflammatory response. Furtherly, activation of Nrf2 signaling pathway in glial cells participated in ICA-produced neuroprotection, as revealed by the following observations. First, ICA enhanced Nrf2 signaling activation in 6-OHDA-induced mouse PD model. Second, ICA failed to generate DA neuroprotection and suppress glial cells-mediated pro-inflammatory factors production in Nrf2 knockout mice. Third, ICA exhibited neuroprotection in primary neuron-glia co-cultures but not in neuron-enriched cultures (without glial cells presence). Either, ICA-mediated neuroprotection was not discerned after Nrf2 siRNA treatment in neuron-glia co-cultures.ConclusionsOur findings identify that ICA attenuated glial cells-mediated neuroinflammation and evoked DA neuroprotection via an Nrf2-dependent manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据