4.6 Article

Miniature electroparticle-cuff for wireless peripheral neuromodulation

期刊

JOURNAL OF NEURAL ENGINEERING
卷 16, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1741-2552/ab1c36

关键词

wireless; stimulation; peripheral nerve; cuff electrodes; electro particle

资金

  1. Charles Stark Draper Laboratory
  2. ConTex fellowship from the University of Texas System
  3. Consejo Nacional de Cien-cia y Tecnologia de Mexico (CONACYT)
  4. American Heart Association [18CSA33990385]

向作者/读者索取更多资源

Objective. Recent developments in peripheral nerve electrodes allow the efficient and selective neuromodulation of somatic and autonomic nerves, which has proven beneficial in specific bioelectronic medical applications. However, current most clinical devices are wired and powered by implantable batteries which suffer from several limitations. We recently developed a sub-millimeter inductively powered neural stimulator (electroparticle; EP), and in this study, we report the integration of the EP onto commercial cuff electrodes (EP-C) allowing the wireless activation of peripheral nerves. Approach. The current output of this device was defined at different magnetic field strenghts, and with respect to external antenna distance and activation angles. In acute in vivo testing, stimulation of the rat sciatic nerve (ScN) with the EP-C was able to evoke motor responses quantified by 3D tracking of the hind limb movement. Motor recruitment curves were obtained in response to variations in magnetic field strength (0-92.91 A m(-1)), stimulation frequencies (2-7 Hz), and pulse widths (50-200 mu s). Main results. The results show constant output voltage throughout 50400 stimulating cycles on a benchtop setting, and successful ScN motor activation with a 4cm distance between external antenna and receiver. We achieved optimal motor recruitment indicated by maximizing range of hindlimb movement (6.01 +/- 2.92mm) with a magnetic field of 40.02 +/- 2.85 A m(-1) and 150 mu s pulse width. Stimulating pulse width or frequency did not significantly influence motor recruitment. Significance. We confirmed that continuous stimulation for 14 min using monophasic pulses did not deleteriously affect the evoked motor responses when compared to wired charge-balanced biphasic electrical stimulation. We observed, however, a 36%-44% decrease in the evoked limb movement in both groups over time due to muscle fatigue. This study shows that the EP-C device can be used effectively for peripheral nerve neuromodulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据