4.7 Article

A soft computing approach for estimating the specific heat capacity of molten salt-based nanofluids

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 281, 期 -, 页码 365-375

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molliq.2019.02.106

关键词

Nanofluids; Molten salt; Specific heat capacity; Neural network; Machine learning

资金

  1. Fulbright Program of the US Department of State

向作者/读者索取更多资源

Despite the promising potential of nanofluids as heat transfer and energy storage media, determination of their thermal behavior and properties need significant experimentation. Considering the relatively high costs of such fluids and the time-consuming procedures for synthesizing them and measuring their characteristics, machine learning techniques can be powerful tools for simulating their behaviors in the unstudied combinations of operating conditions. In this study, a machine learning model has been developed for the first time in the literature - to simulate and predict the specific heat capacity of a molten nitrate salt mixture seeded with silica, alumina and titania nanoparticles. A multilayer perceptron neural network (ANN) was selected among 1920 ANNs with different architectural features. With a prediction R-2 value of 0.9998, the suggested model was found to provide much superior predictions (and validated against experimental data) as compared to the classic analytical models. The model developed in this study can, therefore, be used for estimating the values of specific heat capacity for nanofluid samples - based on the temperature and mass fraction of the nanoparticles, as well as the average (or nominal size) of the nanoparticles. The soft-computing technique itself was evaluated under extreme training conditions and it was found that the algorithm can adapt to new data sets with maximum MAPE of 2% and can enable excellent quality of predictions (R-2 > 0.95) when trained with <300 data points. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据