4.6 Article

Z-scheme CdIn2S4/BiOCl nanosheet face-to-face heterostructure: in-situ synthesis and enhanced interfacial charge transfer for high-efficient photocatalytic performance

期刊

JOURNAL OF MATERIALS SCIENCE
卷 54, 期 13, 页码 9573-9590

出版社

SPRINGER
DOI: 10.1007/s10853-019-03401-2

关键词

-

资金

  1. National Key R&D Program of China [2017YFE0102700]
  2. Ministry of Science and Technology (MOST) of China
  3. National Basic Research Program of China [21777062, 21576124]
  4. Natural Science Foundation of Jiangsu Province [BK20160495, 21107037]

向作者/读者索取更多资源

In this work, a novel Z-scheme CdIn2S4 nano-octahedron/BiOCl nanosheet (CIS/BOC) heterostructure was successfully designed and synthesized via a facile in-situ hydrothermal process, where the CdIn2S4 nano-octahedra grew on the surfaces of tiny BiOCl nanosheets in a face-to-face way. The structure, morphology and optical properties of as-prepared samples were characterized through various technologies. The photocatalytic activities were systematically evaluated by the degradation of methyl orange (MO), tetracycline hydrochloride (TCH) and rhodamine B (RhB) under simulated solar light irradiation. The degradation results displayed that all CIS/BOC composites exhibited significantly enhanced photocatalytic activities toward MO degradation in comparison with the bare CdIn2S4 and BiOCl. Simultaneously, the obtained CIS/BOC-2 with 6wt.% BiOCl nanosheets loaded possessed the optimal photocatalytic performance, and its rate constant was about 3.6 and 2.59 times as high as those of bare CdIn2S4 and BiOCl. Furthermore, the CIS/BOC-2 nanocomposite with superior photostability and repeatability also presented high photocatalytic activities for the removal of both antibiotics (TCH) and dyestuff (RhB). The unique Z-scheme face-to-face heterostructure with intimate contacted interface in CIS/BOC-x nanocomposites provided more charge transfer nanochannels, shortened the migration distance and boosted the separation of photoinduced charge carriers, resulting in the excellent photocatalytic activities. Our study may provide a promising strategy to develop and synthesize other Z-scheme face-to-face composite photocatalysts with good photocatalytic performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据