4.7 Article

Sub-grid scale model classification and blending through deep learning

期刊

JOURNAL OF FLUID MECHANICS
卷 870, 期 -, 页码 784-812

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2019.254

关键词

computational methods; turbulence modelling

资金

  1. US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research [DE-SC0019290]
  2. NVIDIA Corporation

向作者/读者索取更多资源

In this article we detail the use of machine learning for spatio-temporally dynamic turbulence model classification and hybridization for large eddy simulations (LES) of turbulence. Our predictive framework is devised around the determination of local conditional probabilities for turbulence models that have varying underlying hypotheses. As a first deployment of this learning, we classify a point on our computational grid as that which requires the functional hypothesis, the structural hypothesis or no modelling at all. This ensures that the appropriate model is specified from a priori knowledge and an efficient balance of model characteristics is obtained in a particular flow computation. In addition, we also utilize the conditional-probability predictions of the same machine learning to blend turbulence models for another hybrid closure. Our test case for the demonstration of this concept is given by Kraichnan turbulence, which exhibits a strong interplay of enstrophy and energy cascades in the wavenumber domain. Our results indicate that the proposed methods lead to robust and stable closure and may potentially be used to combine the strengths of various models for complex flow phenomena prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据