4.7 Article

Periodontal Tissue Engineering with a Multiphasic Construct and Cell Sheets

期刊

JOURNAL OF DENTAL RESEARCH
卷 98, 期 6, 页码 673-681

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034519837967

关键词

periodontal ligament; biocompatible materials; cementogenesis; osteogenesis; tissue scaffolds; cell transplantation

资金

  1. National Health and Medical Research Council

向作者/读者索取更多资源

This study reports on scaffold-based periodontal tissue engineering in a large preclinical animal model. A biphasic scaffold consisting of bone and periodontal ligament compartments manufactured by melt and solution electrospinning, respectively, was used for the delivery of in vitro matured cell sheets from 3 sources: gingival cells (GCs), bone marrow-derived mesenchymal stromal cells (Bm-MSCs), and periodontal ligament cells (PDLCs). The construct featured a 3-dimensional fibrous bone compartment with macroscopic pore size, while the periodontal compartment consisted of a flexible porous membrane for cell sheet delivery. The regenerative performance of the constructs was radiographically and histologically assessed in surgically created periodontal defects in sheep following 5 and 10 wk of healing. Histologic observation demonstrated that the constructs maintained their shape and volume throughout the entirety of the in vivo study and were well integrated with the surrounding tissue. There was also excellent tissue integration between the bone and periodontal ligament compartments as well as the tooth root interface, enabling the attachment of periodontal ligament fibers into newly formed cementum and bone. Bone coverage along the root surface increased between weeks 5 and 10 in the Bm-MSC and PDLC groups. At week 10, the micro-computed tomography results showed that the PDLC group had greater bone fill as compared with the empty scaffold, while the GC group had less bone than the 3 other groups (control, Bm-MSC, and PDLC). Periodontal regeneration, as measured by histologically verified new bone and cementum formation with obliquely inserted periodontal ligament fibers, increased between 5 and 10 wk for the empty, Bm-MSC, and PDLC groups, while the GC group was inferior to the Bm-MSC and PDLC groups at 10 wk. This study demonstrates that periodontal regeneration can be achieved via the utilization of a multiphasic construct, with Bm-MSCs and PDLCs obtaining superior results as compared with GC-derived cell sheets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据