4.7 Article

Wrapped stellate silica nanocomposites as biocompatible luminescent nanoplatforms assessed in vivo

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 542, 期 -, 页码 469-482

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2019.01.098

关键词

Stellate mesoporous silica; Quantum dots; Isobutyramide binders; Protective coatings; Polysaccharide shell; Cell viability; Zebrafish; In vivo cell tracking

资金

  1. NANOTRANSMED project
  2. European Regional Development Fund (ERDF)
  3. Swiss Confederation
  4. Swiss cantons of Aargau, Basel-Landschaft and Basel-Stadt
  5. Institut National du Cancer (INCa) [PRTK14, THERAMAG 2014-225]
  6. INSERM
  7. University of Strasbourg
  8. La ligue contre le Cancer
  9. INCa
  10. Plan Cancer (OPto-MetaTrap)

向作者/读者索取更多资源

The engineering of luminescent nanoplatforms for biomedical applications displaying ability for scaling-up, good colloidal stability in aqueous solutions, biocompatibility, and providing an easy detection in vivo by fluorescence methods while offering high potential of functionalities, is currently a challenge. The original strategy proposed here involves the use of large pore (ca. 15 nm) mesoporous silica (MS) nanoparticles (NPs) having a stellate morphology (denoted STMS) on which fluorescent InP/ZnS quantum dots (QDs) are covalently grafted with a high yield (>= 90%). These nanoplatforms are after that further coated to avoid a potential QDs release. To protect the QDs from potential release or dissolution, two wrapping methods are developed: (i) a further coating with a silica shell having small pores (<= 2 nm) or (ii) a tight polysaccharide shell deposited on the surface of these STMS@QDs particles via an original isobutyramide (IBAM)-mediated method. Both wrapping approaches yield to novel luminescent nanoplatforms displaying a highly controlled structure, a high size monodispersity (ca. 200 and 100 nm respectively) and colloidal stability in aqueous solutions. Among both methods, the IBAM-polysaccharide coating approach is shown the most suitable to ensure QDs protection and to avoid metal cation release over three months. Furthermore, these original STMS@QDs@polysaccharide luminescent nanoplatforms are shown biocompatible in vitro with murine cancer cells and in vivo after injections within zebrafish (ZF) translucent embryos where no sign of toxicity is observed during their development over several days. As assessed by in vivo confocal microscopy imaging, these nanoplatforms are shown to rapidly extravasate from blood circulation to settle in neighboring tissues, ensuring a remanent fluorescent labelling of ZF tissues in vivo. Such fluorescent and hybrid STMS composites are envisioned as novel luminescent nanoplatforms for in vivo fluorescence tracking applications and offer a versatile degree of additional functionalities (drug delivery, incorporation of magnetic/plasmonic core). (C) 2019 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据