4.4 Article

Steering and in situ monitoring of drying phenomena during film fabrication

期刊

JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH
卷 16, 期 5, 页码 1213-1221

出版社

SPRINGER
DOI: 10.1007/s11998-019-00206-5

关键词

Electrode fabrication; Crack formation; Surface tension; Drying mechanisms; Slot die coating

资金

  1. Bavarian Ministry of Economic Affairs and Media, Energy and Technology [42-6521a/15/5]

向作者/读者索取更多资源

During film fabrication, the phenomena of crack formation and delamination are often observed, dramatically hindering the discovery and characterization of new materials for energy applications. In this work, we report on a novel approach to fully steer the drying parameters or knobs that are commonly used during electrode manufacture. It allows us to precisely in situ control and monitor the solvent-specific evaporation rates that affect the development of suspension composition during drying. We managed to control the capillary stress inside the layer by precisely controlling the selectivity of solvent evaporation. Large cracks result when the surface tension increases over time and layer delamination occurs. When using an n-propanol/water system, critical crack formation is achieved when water is enriched by decreasing the gas exchange during drying or preloading the gas phase with water vapor. High gas exchange rates inhibit the water's enrichment, and therefore, only small surface cracks develop. The experiments also surprisingly indicate that the drying temperature has no significant effect on crack formation. These results are of fundamental meaning for the future development of electrodes as the drying step has a high impact on the products specification and now can be ultimately controlled. The future development of electrodes will surely benefit from this achievement in the controlled fabrication of films for a variety of applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据