4.5 Article

Synergistic effect of salts and methanol in thermodynamic inhibition of sII gas hydrates

期刊

JOURNAL OF CHEMICAL THERMODYNAMICS
卷 137, 期 -, 页码 119-130

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jct.2019.05.013

关键词

Gas hydrates; Gas mixture; Methanol; Salts; Phase equilibria; Inhibition

资金

  1. Ministry of Science and Higher Education of the Russian Federation [14, Z50.31.0035]

向作者/读者索取更多资源

In this work phase equilibrium conditions for structure II (sII) gas hydrates in systems containing a mixture of salts (NaCl, KCl, CaCl2, MgCl2) and methanol have been measured using a high-pressure cell. The concentration of salts in aqueous solution (model of reservoir water) was constant in all experiments and equal to 18 wt%. Phase equilibrium conditions were determined by the isochoric method for pressures ranging from 1 to 4.7 MPa and for mass fraction of methanol from 0 to 50 wt%. The experimental data were obtained for water + salts, water + methanol, and water + salts + methanol systems. From the results obtained, it follows that 20 wt% of methanol in distilled water (DW) gives the thermodynamic shift of the hydrate decomposition temperature close to the brine one. Mixtures of 10% methanol + brine and 20% methanol + brine significantly better reduce the equilibrium temperature of hydrate dissociation compared to samples with the similar total mass fraction of inhibitor (methanol) in water (30, 40 wt%). At the pressures of more than 4 MPa combination of 20 wt% methanol + brine provide the same thermodynamic inhibition as 50 wt% of methanol in water. Thus, the synergism of the methanol + salts mixtures in the thermodynamic inhibition of sII gas hydrates has been observed. Synergism manifested itself in a greater shift of equilibrium curves to lower temperatures and higher pressures compared to systems containing only one thermodynamic hydrate inhibitor (THI). The obtained results indicate the possibility of a significant reduction in the consumption of polar organic THI for gas hydrate prevention in deposits with highly mineralized brine. However, it is necessary to take into account the possible complications associated with the precipitation of salts from solutions of water - salt(s) - polar organic THI due to the possible limited mutual solubility of the components. (C) 2019 Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据