4.6 Article

Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope

期刊

JOURNAL OF BIOPHOTONICS
卷 12, 期 9, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jbio.201900028

关键词

coherent Raman imaging; lipid droplets; hyperspectral imaging; stimulated Raman scattering

向作者/读者索取更多资源

Stimulated Raman scattering (SRS) microscopy is a label-free method generating images based on chemical contrast within samples, and has already shown its great potential for high-sensitivity and fast imaging of biological specimens. The capability of SRS to collect molecular vibrational signatures in bio-samples, coupled with the availability of powerful statistical analysis methods, allows quantitative chemical imaging of live cells with sub-cellular resolution. This application has substantially driven the development of new SRS microscopy platforms. Indeed, in recent years, there has been a constant effort on devising configurations able to rapidly collect Raman spectra from samples over a wide vibrational spectral range, as needed for quantitative analysis by using chemometric methods. In this paper, an SRS microscope which exploits spectral shaping by a narrowband and rapidly tunable acousto-optical tunable filter (AOTF) is presented. This microscope enables spectral scanning from the Raman fingerprint region to the Carbon-Hydrogen (CH)-stretch region without any modification of the optical setup. Moreover, it features also a high enough spectral resolution to allow resolving Raman peaks in the crowded fingerprint region. Finally, application of the developed SRS microscope to broadband hyperspectral imaging of biological samples over a large spectral range from 800 to 3600 cm(-1), is demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据