4.7 Article

Genome-wide DNA methylation analysis in ankylosing spondylitis identifies HLA-B*27 dependent and independent DNA methylation changes in whole blood

期刊

JOURNAL OF AUTOIMMUNITY
卷 102, 期 -, 页码 126-132

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jaut.2019.04.022

关键词

Ankylosing spondylitis; Epigenetics; Methylation; HLA-B*27

向作者/读者索取更多资源

Background and objective: Ankylosing spondylitis is a chronic inflammatory disease characterized by inflammation of the sacroiliac joints and the spine that can lead to significant pain, immobility, and disability. The etiology and pathogenesis of ankylosing spondylitis are incompletely understood, though most patients carry the HLA-B*27 allele. The objective of this study was to evaluate DNA methylation changes in ankylosing spondylitis with the goal of revealing novel mechanistic insights into this disease. Methods: Genome-wide DNA methylation analysis was performed in whole blood DNA samples using the Infinium MethylationEPIC array in patients with ankylosing spondylitis compared to age, sex, and race matched patients with osteoarthritis as a non-inflammatory disease control. We studied 24 patients with ankylosing spondylitis, including 12 patients who carry HLA-B*27 and 12 patients who are HLA-B*27 negative. DNA methylation analysis was performed with adjustment for blood cell composition in each sample. Results: We identified a total of 67 differentially methylated sites between ankylosing spondylitis patients and osteoarthritis controls. Hypermethylated genes found included GTPase-related genes, while hypomethylated genes included HCP5, which encodes a lncRNA within the MHC region, previously associated with genetic risk for psoriasis and toxic epidermal necrolysis. Carrying HLA-B*27 was associated with robust hypomethylation of HCP5, tubulin folding cofactor A (TBCA) and phospholipase D Family Member 6 (PLD6) in ankylosing spondylitis patients. Hypomethylation within HCP5 involves a CpG site that contains a single nucleotide polymorphism in linkage disequilibrium with HLA-B*27 and that controls DNA methylation at this locus in an allele-specific manner. Conclusions: A genome-wide DNA methylation analysis in ankylosing spondylitis identified DNA methylation patterns that could provide potential novel insights into this disease. Our findings suggest that HLA-B*27 might play a role in ankylosing spondylitis in part through inducing epigenetic dysregulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据