4.7 Article

Improving ductility of a Mg alloy via non-basal < a > slip induced by Ca addition

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 120, 期 -, 页码 164-179

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2019.04.020

关键词

Dislocations; Polycrystalline material; Electron microscopy; Mechanical testing; Magnesium alloy

资金

  1. National Key Research and Development Program of China [2016YFB0701203]
  2. National Natural Science Foundation of China [51631006, 51671127]

向作者/读者索取更多资源

Addition of a small amount of Ca improves the ductility of Mg alloys. However, the mechanism underlying this effect is not well understood. In this work, tensile testing of an extruded Mg 0.47 wt% Ca alloy was conducted inside a scanning electron microscope. Electron back scattered diffraction-based slip trace analysis was performed to study in-grain slip activities at 1%, 2%, 4%, 8%, and 16% tensile strain. While the majority of the grains were deformed by {0001} < 11<(2)over bar>0> basal slip, slip lines from {1 (1) over bar 00} prismatic planes and {1 (1) over bar 01} pyramidal I planes were also frequently observed, and their fractions increased with strain. Ex situ transmission electron microscopy indicated that the pyramidal I slip lines were associated with < a > dislocations instead of < c + a > dislocations. From Schmid factor analysis, the critical resolved shear stresses of prismatic slip and pyramidal < a > slip are approximately twice that of basal slip in this Mg Ca alloy. The enhanced activity of non-basal < a > slip improved the material's ductility. Our first-principles calculations found that solute Ca atoms would reduce the unstable stacking fault energy for all slip modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据