4.1 Article

Computational Design and Analysis of a Poly-Epitope Fusion Protein: A New Vaccine Candidate for Hepatitis and Poliovirus

出版社

SPRINGER
DOI: 10.1007/s10989-019-09845-z

关键词

In silico; Bioinformatic; Poly-epitope; Hepatitis; Poliovirus; Vaccination

资金

  1. Shahid Beheshti University of Medical Sciences [10221]

向作者/读者索取更多资源

Infections with HCV, HBV and poliovirus are still considered to be substantial global health burdens. Vaccination is one of the most important preventive strategies against these infections. Multi-epitope vaccines are presented as novel strategies to circumvent the limitations associated with conventional vaccines. Given these circumstances, a multi-epitope protein was designed using the predicted high score epitopes of the antigens from HCV, HBV and Poliovirus. To this end, the sequences of HCV core protein, HBV small surface antigen and VPs of Poliovirus were collected and the consensus sequence of these antigens were obtained using BLAST and MSA analyses. Then, the physicochemical properties of these antigens along with their high score B and T-cell epitopes were predicted using various softwares. The obtained epitopes were connected with proper linkers to build the final 500 amino acids HHP protein. The secondary and tertiary structure of the HHP as well as its physicochemical properties and immunological properties were predicted using different tools. Assessment of various properties of the designed protein indicated that the HHP poly-epitope is an immunogenic and non-allergen antigen, which can derive humoral and cellular immune responses against HCV, HBV and Poliovirus infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据