4.7 Article

In Vitro Co-Culture Model of Primary Human Osteoblasts and Osteocytes in Collagen Gels

期刊

出版社

MDPI
DOI: 10.3390/ijms20081998

关键词

osteoblast; osteocyte; three-dimensional (3D) co-culture; osteocalcin; collagen gel

资金

  1. German Research Foundation (DFG) [BE 5139/3-1]

向作者/读者索取更多资源

Background: Osteocytes are the key regulator cells in bone tissue, affecting activity of both osteoblasts and osteoclasts. Current in vitro studies on osteocyte-osteoblast interaction are invariably performed with rodent cells, mostly murine cell lines, which diminishes the clinical relevance of the data. Objective: The objective of the present study was to establish an in vitro co-culture system of osteoblasts and osteocytes, which is based solely on human primary cells. Methods: Three different approaches for the generation of human primary osteocytes were compared: direct isolation of osteocytes from bone tissue by multistep digestion, long-time differentiation of human pre-osteoblasts embedded in collagen gels, and short time differentiation of mature human osteoblasts in collagen gels. Co-cultivation of mature osteoblasts with osteocytes, derived from the three different approaches was performed in a transwell system, with osteocytes, embedded in collagen gels at the apical side and osteoblasts on the basal side of a porous membrane, which allowed the separate gene expression analysis for osteocytes and osteoblasts. Fluorescence microscopic imaging and gene expression analysis were performed separately for osteocytes and osteoblasts. Results: All examined approaches provided cells with typical osteocytic morphology, which expressed osteocyte markers E11, osteocalcin, phosphate regulating endopeptidase homolog, X-linked (PHEX), matrix extracellular phosphoglycoprotein (MEPE), sclerostin, and receptor activator of NF-B Ligand (RANKL). Expression of osteocyte markers was not significantly changed in the presence of osteoblasts. In contrast, osteocalcin gene expression of osteoblasts was significantly upregulated in all examined co-cultures with differentiated osteocytes. Alkaline phosphatase (ALPL), bone sialoprotein II (BSPII), and RANKL expression of osteoblasts was not significantly changed in the co-culture. Conclusion: Interaction of osteoblasts and osteocytes can be monitored in an in vitro model, comprising solely primary human cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据